2,255 research outputs found

    Pilot Study: What Measures Predict First Time Pass Rate on the National Physical Therapy Examination?

    Get PDF
    Background: Research investigating predictors of success on licensure examination is useful for admission criteria as well as targeted intervention for identified at risk students in physical therapy programs. Predictors of success on the National Physical Therapy Examination (NPTE) have been explored but results are no longer current. This study assessed predictive variables including admission data, performance in identified key courses, and academic/clinical difficulty for Doctor of Physical Therapy (DPT) cohorts at Mount St Joseph University. Objective: Determine variables predicting success on the National Physical Therapy Examination. Design: A retrospective correlational study was done. Methods: Retrospective data of Mount St Joseph University Doctor of Physical Therapy cohorts that matriculated between 2006 and 2011 was collected and de-identified. Data variables included admissions data, identified key course grades, evidence of academic difficulties, seven performance indicators from the Clinical Performance Instrument (CPI) during the final internship, and professional Grade Point Average (pGPA). Descriptive statistics, correlational matrix, factor analysis, and multiple regression were used to analyze relationships between and among independent variables to the dependent variable of National Physical Therapy Examination success. Results: Factor analysis revealed four factor categories of independent variables: Clinical Performance Instrument criteria, Doctor of Physical Therapy Academic Performance, Admissions Requirements, and Academic/Clinical Difficulty. Multiple regression identified academic performance within the Doctor of Physical Therapy program (foundational course grades and Grade Point Average) and verbal/quantitative Graduate Examination Record (v/qGRE) scores to be the greatest predictor of first time and ultimate pass rate on the National Physical Therapy Examination. Conclusion: Predictors of success on the National Physical Therapy Examination are essential for DPT programs to consider when making policies regarding admissions, academic standards, and early testing of the National Physical Therapy Examination. Additionally this information can assist Doctor of Physical Therapy programs in identifying at risk students and aiding them in seeking support services to assist their success

    Development and Initial Validation of a Brief Questionnaire on the Patients’ View of the In-Session Realization of the Six Core Components of Acceptance and Commitment Therapy

    Get PDF
    Background: Assessing in-session processes is important in psychotherapy research. The aim of the present study was to create and evaluate a short questionnaire capturing the patients’ view of the in-session realization of the six core components of Acceptance and Commitment Therapy (ACT). Method: In two studies, psychotherapy patients receiving ACT (Study 1: n = 87) or Cognitive-Behavioral Therapy (CBT) (Study 2, Sample 1: n = 115; Sample 2: n = 156) completed the ACT session questionnaire (ACT-SQ). Therapists were n = 9 ACT therapists (Study 1) and n = 77 CBT trainee therapists (Study 2). Results: Factor structure: Exploratory factor analyses suggested a one-factor solution for the ACT-SQ. Reliability: Cronbach’s alpha of the ACT-SQ was good (Study 1: α = .81; Study 2, Sample 1: α = .84; Sample 2: α = .88). Convergent validity: The ACT-SQ was positively correlated with validated psychotherapeutic change mechanisms (p \u3c .05). Criterion validity: Higher ACT-SQ scores were associated with better treatment outcomes (p \u3c .05). Conclusion: The study provides preliminary evidence for the reliability and validity of the ACT-SQ to assess the in-session realization of the six core components of ACT in the patients’ view. Further validation studies and ACT-SQ versions for therapists and observers are necessary

    The Longitudinal Neurophysiological Adaptation of a Division I Female Lacrosse Player Following Anterior Cruciate Rupture and Repair: A Case Report

    Get PDF
    # Background Neurophysiological adaptation following anterior cruciate ligament (ACL) rupture and repair (ACLR) is critical in establishing neural pathways during the rehabilitation process. However, there is limited objective measures available to assess neurological and physiological markers of rehabilitation. # Purpose To investigate the innovative use of quantitative electroencephalography (qEEG) to monitor the longitudinal change in brain and central nervous systems activity while measuring musculoskeletal function during an anterior cruciate ligament repair rehabilitation. # Case Description A 19 year-old, right-handed, Division I NCAA female lacrosse midfielder suffered an anterior cruciate ligament rupture, with a tear to the posterior horn of the lateral meniscus of the right knee. Arthroscopic reconstruction utilizing a hamstring autograft and a 5% lateral meniscectomy was performed. An evidence-based ACLR rehabilitation protocol was implemented while using qEEG. # Outcomes Central nervous system, brain performance and musculoskeletal functional biomarkers were monitored longitudinally at three separate time points following anterior cruciate injury: twenty-four hours post ACL rupture, one month and 10 months following ACLR surgery. Biological markers of stress, recovery, brain workload, attention and physiological arousal levels yielded elevated stress determinants in the acute stages of injury and were accompanied with noted brain alterations. Brain and musculoskeletal dysfunction longitudinally reveal a neurophysiological acute compensation and recovering accommodations from time point one to three. Biological responses to stress, brain workload, arousal, attention and brain connectivity all improved over time. # Discussion The neurophysiological responses following acute ACL rupture demonstrates significant dysfunction and asymmetries neurocognitively and physiologically. Initial qEEG assessments revealed hypoconnectivity and brain state dysregulation. Progressive enhanced brain efficiency and functional task progressions associated with ACLR rehabilitation had notable simultaneous improvements. There may be a role for monitoring CNS/brain state throughout rehabilitation and return to play. Future studies should investigate the use of qEEG and neurophysiological properties in tandem during the rehabilitation progression and return to play

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore